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SectIon 1

Summary of Program for

Reporting Period

- I
Program Objectives

To develop practical , low cost, real time methods for

suppressing noise which has been acoustically added to

- speech.

To demonstrate that through the incorporation of the

noise suppress ion methods , speech can be effec tively

analysed for n a r r o w  band digi tal  t ransmiss ion in practical

operating environments.

• Summary of Tasks and Results

Introduct ion

This Semi—Annual technical report describes the status

of work performed dur ing the period 1 October l97~ through

31 March 1979 under ARPA order 3301, contrac t

• 4 
9i~~ij 7 9 ~~— oo 4 s with Naval Research Laboratories.

—1—

•— _ -  • -- - • _ - - - • • • - • • • • •



F— ~~~~~ 
‘
-
~~

• --- --- —_ 
- -• -

~
--•-—- -- ----

~
-
~
--- — ‘  

. — , -.- —- - -—•- ---- • --• —.
~
----—--—.

~
------- . —

A SPECTRAL SUBTRACTION ALGORITHM FOR

SUPPRESSION OF ACOUSTIC NOISE IN SPEECH

Steven F. Boll

Abstract

Spectral subtraction has been shown to be an effective

approach for reducing ambient acoustic noise in order to

impr ove the i n t e l l i g ib i l i t y  and qua l i ty  of d igi ta l ly
• compressed speech . This paper presents a set of

• implementation specifications to improve algori thm

performance and minimize algorithm computation and memory

requirements. It is shown spectral subtraction can be

implemented in terms of a nonstationary, multiplicative ,

frequency domain filter which changes with the time varying

spectral characteristics of the speech. Using this filter a

speech activity detector is defined and used to allow the

algor i thm to adapt automatically to chang ing ambient noise

environments. Also the bandwidth information of this filter

is used to fur ther reduce the residual narrowband noise

components which remain after spectral subtraction .

•

k.~~
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REDUCTION OF NONSTATIONARY NOISE IN

SPEECH USING LMS ADAPTIVE NOISE CANCELLING

Dennis Pulsipher , Steven F. Bo].l, Craig Rushforth , LaMar Timothy

Abstract

• Nonstationary acoustic noise with energy possibly equal

to or g rea te r  than the speech is suppressed using a two

microphone implementation of adaptive noise cancellation .

The pr imary noise added to the speech is reduced by

• s ub t rac t ing  a f i l t e red  version of the second microphone

reference noise . The reference  noise f i l t e r  is adaptively

up dated using the Widrow—Hoff LMS algorithm . The

effectiveness of noise suppression depends di rect ly  on the

abi l i ty  of the f i l t e r  to estimate the t r a n s f e r  funct ion

relating the pr imary and reference noise channels. A study

of the f i l t e r  length required to achieve a desired noise

reduction level in a hard—walled room is presented . Results

demonstra t i i~j  noise reduction in excess 10dB in an

environment with 0dB signal to noise ratio are presented .

This abstract is taken from the Ph.D dissertation of

Dennis Pulsipher . This disser ta t ion enti t led “Application

of Adaptive Noise Cancellationto Noise Reduction in Audio
- 

- Signals” has been published as a technical report No.

UTEC-CSc-79-022.

—3—
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RANK-ORDER SPEECH CLASSIFICATION ALGORITHM

(RASCAL)

Ben Cox

L. K. Timothy

Abstract

This paper describes a theoretical and experimental

investigation for detecting the presence of speech in wide

band noise . A robust a lgor i thm for making the

silence—voiced—unvoiced decision is described . This

algorithm is based on a nonparametric rank—order statistical

signal—detect ion scheme that does not requ i re  a t r a in ing  set

of data and main ta ins  a constant f a l s e — a l a r m  ra te  for a

broad class of noise inputs corresponding to a single

decision threshold. The nonparametric rank—order decision

procedure is the multiple use of the two—sample Savage T

stat is t ic .  The performance of th is  detector is evaluated

and compared to that  obtained by manual ly  c lass i fy ing twenty

recorded u t terances  with 39 , 30 , 20 , 10 , and 0 decibel

signal—to—noi s¼ ra t ios .  In l imited test ing , the average

pr obabil i ty of misc lass i f i ca t ion  is less that  5 percent , 12

percent ,  and 55 percent for signal-to—noise ratios of 39 ,

• 20, and 0 decibels respectively.

-4- 
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ESTIMATING THE PARAMETERS OF A NOISY ALL-POLE PROCESS

USING POLE-ZERO MODELING

W. J. DONE

C. K. RUSHFORTH

Abst rac t

Linear pred ic t ive  coding (LPC ) has been successfully

applied to the encoding of speech and other t ime series. It

has been widely observed , however , tha t  the pe r formance of

an LPC a lgo r i t hm de t e r ior a t e s  r ap id ly  in the presence of

background noise. In th is  pape r , we describe and discuss

one approach to the iden t i f i ca t ion  of a time series

corrupted by addi t ive  whi te  noise .

A common approach to th i s  problem is to p r e f i l t e r  the

noisy time series , and then to apply an est imation algori thm

which t r ea t s  the time series as if it were noise—free. We

describe an a l t e rna t i ve  approach which involves modifying

the t ime—series  model at the outset to the account for the

presence of noise. An est imation a lgor i thm is then

developed for th is  modif ied model. We discuss the

development of the model, the estimation algorithm , and some

representative exper imental results.

-5-
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This abstract is taken from the Ph.D. dissertation of

W.J .  Done en tj l t ed , “Es t ima t ion  of the Par ameters of an

Autoregressive Process in the Presence of Additive White

Noise.” This diss’rtation has been published as technical

report No. UTEC —CSc — 79—02 1.
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EVALUATION OF THE STEIGLITZ ALGORITHM FOR E STIMATING

THE PARAMETERS OF AN ARMA PROCESS

W. 1. Done

C. K. Rushfor th

Abstract

Steiglitz has recently described an algor i thm for

estimating the pa r ameters of an

autoregressive—moving -average (ARMA) process. This

algor i thm has application , for example, to the problem of

determining the poles and zeros of the vocal—tract  t ransfer

funct ion .

In this paper , we report  and discuss the results of a

number of simulations conducted using the Steigli tz

algori thm. The bulk of the experiments involved driving the

ten—pole, two—zero filter described in (2)  with a single

pulse, with a short pulse train , and with samples of white

-• Gaussian noise. In each of these cases, we evaluated the

effects  of such processing options as windowing ,

pree!nphasis, and cepstral—domain filtering . We also discuss

and compare results obtained by applying the Steiglitz

algorithm and a Newton-Raphson conditional

max imum—likelihood algorithm to a first—order process.

—7—
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This abstract is taken from the Ph.D. dissertation of

W.J.  Done ent i t led , “Est imat ion of the Parameters of an

Autoregressive Process in the Presence of Addit ive White
Noise. ” This dissertat ion has been published as technical
r eport , No. UTEC-CSc-7 9—02 1.
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RATE/PITCH MODIFICATION

USING THE CONSTANT-Q TRANSFORM

James E. Youngberg

Abstract

Modif ica t ion of the ra te  of • occurrence of acoustic

events without  a l t e r i ng  frequency content , and modification
• ¶ of pitch wi thout  chang ing time scale are presented as

equivalent problems. While the short—time Fourier transform

has been used to solve the rate modification problem , it is

not a n a t u r a l  tool . It lacks the scaling property of the

Fourier  t r ans form.  The Con stan t— Q t r a n s f o r m ,  on the other

hand , exhibits th i s  properly. A more natural rate/pitch

modification system using the Constant—Q transform is

presented which performs well with rate/pitch changes by

factors of between one—third and three.

4!i••.~’• -
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A SPECTRAL SUBTRACTION ALGORITHM FOR

SUPPRESSION OF ACOUSTIC NOISE IN SPEECH

Steven F. Boll

To be presented at ICASSP-79

April 2—4, 1979

• Washington, D.C.
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A Spectral Subtraction Algorithm for

Suppression of Acoustic Noise in Speech

Steven F. Boll

Computer Science Department

Univers i ty  of Utah

Salt Lake City , Utah 84112

Spectral subtract ion has been shown to be an

ef fec t ive  approach for reducing ambient acoustic noise

in order to improve the in t e l l ig ib i l i t y  and quali ty of

digitally compressed speech. This paper presents a set

of implementation specificat ions to improve algori thm

performance and minimize algorithm computation and

memory requirements .  It is shown spectral subtraction

can be implemented in terms of a nonstationary,

mult ipl icat ive, frequency domain f i l t e r  which changes

with the time varying spectral characteristics of the

speech . Using this f i l te r  a speech ac t iv i ty  detector

is defined and used to allow the algorithm to adapt

automatically to chang ing ambient noise environments.

Also the bandwidth information of this filter is used

to further reduce the residual narrowband noise

• 
.

.;• . components which remain a f t e r  spectral subtraction .

~~~~
- —11—
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In t roduct  ion

Digi ta l  speech compression systems operat ing in

environments with hi gh ambient acoustic noise may

require  additional noise suppression to process speech

having acceptable inte l l igibi l i ty  and qual i ty [1).

Previous resul ts  to suppress noise using the spectral

subtraction approach have demonstrated quanti tat ive

improvements in qual i ty  and in te l l ig ib i l i ty  [2], (3].

This paper describes a number of techniques for

impr oving the e f f ic iency  and ef fec t iveness  of this

appr oach . It is shown that the a lgor i thm can be

implemented in terms of a nonstationary,

multiplicative , frequency domain filter.

Characteristics of this filter provide information for

further reduction of spectral error and detection of

speech ac t iv i ty .  In addit ion techniques are presented

for increasing algor i thm e f f i c i e n c y ,  decreasing memory

) requirements , decreasing processing delay , and

simplifying requi rements  for  in te r fac ing  the noise

• suppr esso r with the subsequent speech compression

analyzer .

Signal Estimation Using Spectral Subtraction

Signal x(i) digitized from a single microphone
• 

~~~~ • • • cons ists of the sum of speech Sp( i )  and ambient
• acoustic noise n ( i ) .  It is assumed that the noise is

—12— 
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locally stationary to the extent that average value of

its spectral magnitud e d u r i n g  speech ac t iv i ty  is equa l

to that  measured jus t  pr ior  to speech ac t iv i ty .  Us ing

these assumptions the spectral subtraction algorithm

attempts to suppress the additive acoustic noise

component n(i) from x (i) by the following steps:

1. Segment the noisy data into windowed analysis

blocks of length M samples, x(i),i=O ,1...,M—l.

2. Compute the N point DFT X(k) of data x(i).

3. Estimate the speech spectrum S(k) by

subt rac t ing  the average noise spectral magnitude , B ( k )

— a v e l N ( k ) I ,  calculated dur ing  non—speech ac t iv i ty ,

from IX(k )I :

5( k )  — (IX(k)(—B(k~ 1 exp (j ARGtX (k)]) kzO ,l,...,N—1

The motivation behind this approach is to subtract

from the noisy speech spectrum , an estimate of the

noise spectrum which is readily avai lable .  The

magnitud e of N ( k )  is replaced by its average value ,

B(k), and the phase of N(k) is replaced by the phase of

X(k)

The spectral error using this approach is given by

S(k)—Sp(k) — N(k)—B (k) exp(j ARG[X(k)J)

S

—13—
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A simple method for reducing this error is

• half—wave rectification . With it the estimator becomes

S(k) (X(k)—B(k)}exp(j ARG (X(k)]) IX(k)I>B(k)
0 IX(k)I<B (k)

• Multiplicative Filter

The spectral subtraction estimator can be

compactly defined using a multiplicative frequency

filter , 11(k):

11(k) = (l—B(k)/IX(k)I)(l/2 + 1/2 SGN(IX(k)I—B(k)))

The speech estimate S(k) is then given by

S(k)=H(k)X(k). Examination of the expression for H(k)

shows that H(k) = 0 when IX(k) I <B(k), (band stop) and

H(k) 1 for X(k)I>>B(k), (band pass). In addition an

estimate of the signal to noise ratio SNR is directly

available from 11(k) at each frequency bin k:

SNR(k) = S(k)/B(k) = H (k)/(l—H(k))

Residual Noise Suppression

After half—wave rectification speech plus noise

above B(k) remains. In the absence of sp2ech activity ,

the noise residual N(k)—B(k) exp (j ARG (n(k)J) will

• 
~~~~~~~

• exhibit itself as randomly spaced narrowband spikes

- 3 .  separated by intervals , having zero magnitude. The

• ~-Y corresponding frequency filters 11(k) will have the same

zero magnitude intervals. Non—zero amplitudes will

—14—
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have values given by

11(k) — l—B(k)/IN(k) I

These va lues , being deviations of the noise

magn itude spectrum above its mean correspond to the

noise residual. Assuming the noise to be a zero mean ,

Gaussian process , the magnitude spectrum of N I  wi l l

have a Rayleigh distribution . Using this information

it can be shown that less than 1% of the time will 11(k)

exceed a value of 0.6 (2.5 times its mean , B(k)) when

speech is absent. This suggests that the noise

residual could be el iminated 99% of the time by simply

zeroing all spectral components which corresponds to

values of 11(k) less than 0.6. However , during speech

activity , assuming Gaussian speech and a signal to

noise ratio of 10dB, 11(k) will take on values below

0.6, about 36% of the time . Thus simply rejecting all

spectra X(k) corresponding to 11(k) below 0.6 could in

some instances incorrectly remove low energy speech

spectra.

In order to reduce the noise residual but retain

low energy speech in X(k), a magnitude plus bandwidth

measurement test is used . Sections of 11(k) having

bandwidths less than 300Hz and amplitudes less than 0.6

are classified as being due only to noise. Here

bandwidth is defined as the distance between success ive
N frequency bins having zero amplitude. The 300Hz figure

—15— 
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was empirically determined after examining an ensemble

of subtractive filter frequency responses taken during

non—speech activity using helicopter noise. These

noise only sections are attenuated by an additional

20dB.

This secondary noise suppression procedure was

applied to all values of H(k) above 800Hz. Below 800Hz

narrowband harmonics essential to accurate pitch

detection can be present. This procedure could

incorrectly attenuate them causing pitch tracking

errors. Therefore in this frequency region only bias

removal and half—wave rectification is employed . The

800Hz value was picked to equal the cutoff frequency of

the low—pass filter applied to the signal prior to down

sampling for SIFT (4]  pitch detection . Figure 1 shows

examples of subtractive filters and corresponding

magnitude spectra before and after residual noise

reduction computed for a frame of noise only signal.

Figure 2 shows examples of subtractive filters and

correspond ing magnitude spectra before and after

residual noise reduction during voiced speech .

Algor ithm Implementation

The task of spectral subtraction is to provide the

vocoder analyzer w ith a buffer of noise suppressed
speech in a time interval which is not only less than

-16-
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the buffer length time but wh ich is also short enough

to allow the analyzer to compute and transmit the

vocoder channel parameters. This interfacing

constraint imposes certain conditions on the

implementation . The algorithm should use the same

buffer size as the analyzer. Assuming a single

processor it must compute the noise suppressed speech

in the time left over after the analyzer calculations.

It must supply the processed speech with minimum delay.

In addition to the basic noise suppression procedures ,

it must monitor the signal to noise environment and

update the average noise bias spectrum B(k) if

necessary.

Data Segmentation

Buffer lengths of speech compression analyzers

come in all sizes. Matching the noise suppression

analysis buffer to that used by the vocoder results in

the simplest implementation . This approach , however,

leads to two operational compromises. First , if the

buffer is not a power of two then zeros must be

• appended before transforming . Second , if buffer

• lengths are to be matched , with minimum delay , then no
~•

4~(

overlapping (and thus no windowing ) is allowed . The

effect of padding with zeros simply means lower

efficiency (fewer points processed per FFT). It has a

—17— 
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positive effect of reducing the amount of temporal

aliasing due to spectral modification (5]. No overlap

of time windows doubles the processing speed. The

possible detrimental effect of having no time window

• consists of induc ing discontinuities at the buffer

• boundaries. Reconstituted waveforms from successive

analysis buffers will not necessarily agree at the

boundary. In fact, in listening to the processed

speech entering the vocoder, a low-level but distinct

clicking sound can sometimes be heard having a

frequency equal to the analysis frame rate. The

clicking is due to waveform discontinuities at the

boundaries. If the data had been weighted by

half-overlapped hanning windows, the discontinuity

effect could be minimized . However , since the speech

is to be fur ther processed by a compression analyzer

f 
I using the same buffer size, the discontinuities do not

cause noticeable problems.

Bidirectional Biplexed DFT

Spectral subtraction requires two DFT’s to be

performed : a forward transform of the noisy signal

x (i) and an inverse transform of the noise suppressed
• spectrum , S(k)=X(k)H (k). Armantrout (6] developed a

biplexed DFT which simultaneously computes the forward

transform of x(i) and the inverse transform of S(k)
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from the pr evious frame . The load ing procedure is

given as

RE(i) xo(j) + SR(i)/N

Im(i) = xe(i) — SI(i)/N

where xe(j) = (x(i) + x (N—i))/2 , even part of ~(i)

xo(i) = (x(i) — x (N—i))/2, odd part of x(i)

SR(i) = Real part of S(i)

51(1) = Imaginary part of 5(i)
I

N = DFT size

Let C(k) + jD(k) = DFT ( R E ( i ) + j I M ( i ) }

Then

s ( k )  = C ( k )

Re{X(k)} = ( D ( k )  + D(N—k))/2, even part of D(k)

Im{X(k)) = ( D ( k )  + D ( N — k ) ) / 2 , odd par t  of D ( k )

where

s ( k )  equals the inverse  DFT of S ( k )

Re{X(k)} = Real Part of X(k)

Im{X(k)J = Imaginary part of X (k)

In addi t ion , the even-odd symmetr ies  of the

signals can be used to reduce the storage requirement

in half. That is, the even part of the signal can be

• stored in the first N/2+l locations and the odd part of

the signal in the last N/2—l locations.

Speech Activity Detection

- — 
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Effective noise suppression requires an accurate

estimate of the average noise bias , B(k). If the

ambient noise becomes either louder or softer, the bias

• should be updated during the next interval of

non-speech activity .

For detecting the absence of speech activity

during a stationary noise interval and/or detecting a

decrease in the noise bias, the estimated signal to

noise ratio:

SNP (k)=H(k)/(l—H(k) )=S(k)/B(k)

can be used. Computing the average SNR(k) over all

frequency bins provides a measure the relative energy

of S to B. During the absence of speech activity , the

SNR was found to be less than -12dB over a wide range

of noise environments . This measure also can detect

when the ambient noise becomes less. In this instance

t more values of X(k) will lie below B(k)and thus more

values of 11(k) will be zero driving the average value

down. Thus the measure H/Cl—H ) averaged over all

frequency bins compared with  the threshold —12d B was

used to signal speech absence and/or noise bias

reduction .

~~~~~~

•L

4 Noise Bias Increase Detection
• ~~~~~
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• Detecting when the average noise bias has become

louder presents a more difficult problem since spectra

above the noise mean is assumed to be speech. As the

noise increases a larger percentage of X(k) lies above

• B(k). Thus if N(k)>>B(k) then H(k) l. This

unfortunately is the identical situation found during a

high signal to noise ratio environment. The measure

that is needed is N(k)/B(k) or equivalently X(k)/B(k)

for Sp(k)—0. A procedure used to obtain N(k)/B(k) was

to average X(k)/B(k) = l/l—H(k))over the top 300Hz of

the base band . If this average was greater than 10dB
• for ten consecutive analysis frames then the noise bias

is updated.

Automatic Operation

Using the speech activity and bias increase

detectors the spectral subtraction algorithm will run

• without operator intervention . The detectors provide

one of many possible schemes for adaptive operation in

a changing noise environment. Others are possible and

proper procedures for correct adaption still remain a

• research issue probably best resolved using a real—time

• system employed in actual operating environments.

A block diag ram showing the various algorithm

I procedures is given in Figure 3.
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Discussion

Omitting the windowing and half overlapping

simplifies the interface requirements with the follow

on vocoder and doubles the throughput per transform of

the algorithm . This approach induces discontinuities

at the boundaries which are essentially ignored by the

speech analyzer. Using the bidirectional , biplexed DFT

produces only one frame of delay and takes advantage of

the symmetries ‘~f the real data to reduce FFT

computation by about one-half. Reduction of the

residual noise left after subtraction using the

amplitude—bandwidth test removes the majority of the

noise residual while retaining wide bandwidth, low

energy speech. However , noise spectral components

which exceed 2.5 times its mean or with bandwidths

greater than 300Hz will remain. These components, due

both to statistical randomness and nonstationary,

remain due to their resemblance to speech spectra.

Thus the algorithm is biased towards keeping low energy

speech and high energy noise.

A final modification to the multiplicative filter

to suppress the aco~stic effect of the remaining noise

is to replace the zero amplitude frequency bins in H

with a small constant. Using 0.1 instead of 0.0 brings

the noise floor up, insures that the magnitude spectrum

is now everywhere positive, and reinstates the natural

~~ ~~
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ambient noise environment only now attenuated by

approximately 20dB.

It should be apparent that as the signal and noise

energies become equal or the noise becomes highly

nonstationary this algorithm will break down. Speech

intelligibility in these situations can be improved

using noise suppression microphones (1] and/or two

microphone adaptive noise cancellation procedures (7].

• 
_____ 
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REDUCTION OF NONSTATIONARY ACOUSTIC NOISE IN
SPEECH USING LMS ?~DAPTIVE NOISE CANCELLING 

•

Dennis Pulsiph.r Steven F. Boll craig Rushforth LaMar Timothy

Sandia Laboratory University of University of University of
Utah Utah U tah

Nonstationary acoustic noise with. (2)V. (v (n)...v(n—L+l)jH,i..Ih(l ,n)...h(L,n)J
energy possibly equal to or greater than
the speech i~. suppressed using a two where L is the length of the filter to be
microphone implementation of adaptive estimated and H is the filter.
noise cancellation. The primary noise Defining
added to the speech is reduced by Tsubtracting a filtered version of the (3) P — E (x V } R E (V V I
second microphone reference noise . The ‘ n n
reference noise filter is adaptively up yielding
dated using the Widrow—Hoff LMS algorithm —2 2 T(1]. The effectiveness of noise. (4) E(s I E(x~ I — 2P H + ~~RHsuppression depends directly on the
ability of the filter to estimate the which is a quadratic function of H. By
transfer function relating the pr imary and differentiating with respect to the
reference noise channels. A study of the elements of H we get
filter length required to achieve a
desired noise reduction level in a (5) V - — 2P + 2RH .
hard—walled room is presented . Results
demonstrating noise reduction in excess Setting V—I to find the optimal H , we get( 11dB in an environment with 0dB signal 

*• noise ratio are presented . (6) H — R P.

j Introduction The block solution optimal filter was
calculated by solving equation 6. The

Let us assume that we are given x (t), filters were calculated using a standard
the sum of two mutually uncorrelated Levinson ’s recursion algorithm (2] .
signals , s(t) and n(t), and a third signal• v(t) , which is mutually uncorrelated with Adaptive Solution
s(t). we can then form a signal estimate 

*To calculate H adaptively a standard
(1) 1(t) — x(t)—u(t )— s (t)+ (n(t)—u (t)] steepest descent algorithm is used :

where u(t) is a noise estimate which we (7) H H —

will constrain to be a linearly filtered n+ fl n
version of v(t) , (see Figure 1). where the parameter p controls convergence
Minimizing th. mean output power causes and stability. Since , we do not have
the signal estimate 1(t) to be a least access to V , we use a gradient estimate .
mean squares fit to the signal s(t). The —minimization , of course, must be carried (8) V, — — 25nVn
out by choosing an h(t) (the impulse
response of the filter throug h which v (t) which yields the algorithm
is passed to generate u(t)) which 

—minimizes the power in 1( t ) .  • We, then , (9 )  H~~1 — H~ + 2P55V5.
are looking for h(t) which satisfies :

By defining the expected value of H
Min (E (i(t) fl as N

~ 
it can be shown that n

h(t)
(11) M~ (I —2pRflI~+R~~P—II —~~aR]~ R~~P.Block Solution
By diaqonalizing B, it can be shown that

Let v , x , s , etc. be the value of
the corre4ondrng hqnal at time nT, where (11) lim (M~) — P P for Içp< ~T is the s pling interval . n+~ 

A max
Define the vectors 

• where is the largest eigenvalue of
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the matrix P. The variance of the both synthetic and acoustically recorded
estimate can also be forced below any expe r iments.
arbi trary positive limit as n gets large
for uncorrela ted wi th V j for k~’j. Four FIR channel filt ers were used in

order to analyze the performance of the
The optimal filter is a function of noise cancellation . A low—pass filter

the inverse of B, R 1P (eq. 6). If R is with its cutoff frequency at approximately
singular it does not mean, in general , 1510 Hz and a triple band—pass filter were
th at there is no solu tion , simply that it created . Two room—channel estimates were

• is not unique . This condition is made from actual measurements of a room ’s
frequently encountered 

• 
when the response in order to simulate , dig itally,

interfering noise is periodic , or nearly an ac tual room (4].
periodic. While channel estimation is not
completely possible in such cases , it is Synthetic Experimen ts
only necessar y to estimate the channel
accura tely in those frequency bands where For the initial experiments digitally
signi ficant interfering energy is present. recorded speech signals were added to the
Even though the channel estimate may be channel filtered noise segments and used
considered poor in such a situation , the as the noisy signals applied to the ANC
noise reduction achievable may be algorithm . The correspond ing unfiltered

• significant, noise segments were used as the noise
reference input signals. When white

Data Generation Gaussian noise was used as the interfering -
noise, accura te channel es t imates were

If the data is g.nerated as shown in obtained ,(H converged to G2) for both-
figure 2, and if the channel is a finite low—pass and multi—band—pass channels.
length all—zero filter , perfect noise When the highly correlated , nearly
cancellat ion can be achieved if the period ic noise samples were used , the
estimated linear filter , H , converges channel estimates did not converge to the
to C • A more realistic model for data known channels , but essent ially complete
genera tion is given in Figure 3. The noise cancellation still occurred .
noise cancella tion proble . is then reduced
to estimating of 0, — C  , see Figure 4. If ~22!! 

Simulat ions
G and C can be modelled as all— zero
f~1t.rs, tte difficulty in estimating the Using the measured room impulse
optimal f ilter arises because of the need responses , the degree of cancellation
to effectively invert C2 . In general C2 possible in a hard—walled room about
will not be a ~mini.u. phase

s process . fif teen feet square was determined . In
Its inverse will , therefore , have poles the first expe r iment , the original noise
outside the unit circle. For the Signal was used as the reference
estimated Optimal filter to be stable will nois.(G2— I), and one of the room channel
require it to be noncausal and doubly fi ltered signals was used as the noisy
infinite. If its poles are well away from signal. While the original room channel
the unit circle, the response will be estimates were 4096 points long , the
dominated by rapidly decaying adaptive filter was constrained to a
ezponentials. This allows us to length of 3000 points. An adaption
approxima te the required doubly infinite time—constant of approxima tely 0.4 seconds
recursively generated filter , with a was specified . Noise reduction of —25 dB
fini te transversal filter. As thf zeroes was measured for this experiment.
of C2 and the actual poles of G approach
the unit circle, however , the number of In the second experiment, the
points which we must allow in the active reference noise was generated by
interval of the filter to be estimated convolving the white noise with one of the
grows if we desire to maintain a constant room transfer functions ,G , while the
error , (31. noise added to the speech was generated by

convolving the white noise through the
Basic Experi ments other room transfer function,G1 . This

da ta model corresponds to Figure 3. Again
A whi te noise generator was used as c 3000 points were specified for the

primary noise source. Its output wac adapt ive fil ter ’s leng th , half of them
low—pass filtered to 3.2 kHz and sampled before t—S. The resulting noise reduction• at a ra te of 6.67 XHz. A square wave measured was -12 dB .
genera tor was used to generate nearly
periodic noise sample. This sample was Acous tically Recorded Experiments
made highly non-stationary by varying the
frequency adjustment of the square—way . Two similar experiments were
generator in a semi—random fashion while performed in an actual acoustic
digit izi n g.  These sampl es were then enviror ent. The digitized noise sources
concatenated and used as nois. sources for were played through a single multi—ele ment
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BOSE loudspeaker and digitally recorded minimize the total output energy. Also
through two separate SONY ECN—270 Levinson ’s recursion blew up when trying
microphones placed at the same locations to compute a 3000 point filter.
in the hard—walled room.
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The comparisons of the ANC approach
and the global block analysis showed that
the adaptive procedure consistently
performed better due to the
nonstationarity of the noise. The block
analysis was not developed for
nonstationary data and attempted to
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ABSTRACT requires a large amount of signal proc.saing, a sp.sch-fre.
• interval to determine noise detection thresholds, and has not as

This paper describes a Theoretical and experimental yet been eXtenSively tested.
investigation for dstscting the presence of speech in wideband
noise. A robust a lgorithm for making the silence-vo iced- The V-lJV.S decision is a diff icult prob lem in r.al noise
unvo iced decision is described . This a lgorithm is based on a environmen ts; there us s need for continued research on the
nonpararnetr ic rank-order statistica l signsI’detec~.jn scheme theory, techniques , and devices in this ares (53
that does not require a raining set of data and maintains a
constant fa lse-alarm rate for a broad class of noise inputs In the research described here , a nonparametric rank -order
corresponding to a sing le decision threshold . The statistica l decision procedure that is theoretically recognized as
nonpa ra metr ic rank-order decision procedure is the multiple robust in a communication sense has been formulated and
use of the two-sample Savage T statistic. The performance of investigated with a manually classified speech data bess. It is
this detector is evaluated and compared to that obtained by theoretically robust in the communication sense since it has the
manually classifying twenty recorded u tterances with 39, 30. desirable property of maintaining a constant false-alarm rate
20, 10. and 0 decibel signa l-to-noise ratios. In limited tasting, (CFAR I for , wine variety of noise distributions. The decision
the average probability of misclassification is less than 5 threshold is set independent of signal-to.noisa ratio [61.
percent, 12 percent. and 55 percent for Iignal-to.no iee ratios of
39, 20. and 0 decibels respectively The detection performance for the Savage two.sample

nonpar.metric rank -order test for speech signa ls in wideband
noise us presented in this paper. A simple version of the
problem is choeen in order to make a rigorous ana lysis possible.

INTROOUCT ION to evaluate the applicability of nonparamstric procedures to V-
UV-S classification , and to gain clarity.

The funda menta l problem in many splech communication
and understanding systems is the search for a decision A lthOUgh this de~~ t~~ approach is new to speechprocedure that will classify speech in a noisy environ ment as proc—esaig ii is a mature statistica l discipline . The
voiced, unvo iced, or silence (noiee alone). For severa l years, nongeramawic detection review paper by Thomas (73 indic tss
the notable advances in na rrowband vocoders have motivated that a bbIio~raphy published in 1962 gives more then 3000investigation unto the theoretical aspects of robust 5Oi~Ch references The application and analysis of nonparam*t,-ic
classification algorithms that will effectively operate in adverse detections historically has been confined to nonerigineeringnoise environments. problems; an engineering text has only recently been published

[8).
A number of papers and reports have been published

describing the theory and techniques for making the voiced- Some specific advantages of nonparametric statistics
unvoiced-silence (V-UV-S) classification (1) however, very few applied to speech detection are: Ii) It maintains a constantpapers have dealt with the problem of developing effective false-a larm rate with a fixed threshold for large classes of noisealgorithms for real noise environments. In most of these distributions . (2) It does not require statistical information
papers, the detection of speech in background noise was about either the signa l or the background noise (does not
conducted in a resltive ly noise-free environ ment under ideal require a training set of data) to set a decision threshold. (31laboratory acoustic recording conditions. The decision Pe~~rmance for signals in non -Gaussian noise may oftenprocedure that has enjoyed the widest acceptance is the pattern su~~ u that of detection optimized against Gaussian noise. (4)
recognition approech of Atal and Rabiner 121. This technique It will operate where the noise statistics are nonstatlonery or

• has been modified by va r ious investigations (33. The pattern change from one application to another. ~5) It can be digital lyrecognition approach to the V-UV-S classification has implemen ted
usefulnesa for many speech processing system spplications.
H~waver, it does not address the robustness issue in a DESCRIPTION OF THE ALGORTIHM

• communication sense since the technique requires e training
set of da ta and will operate without degradation in performance SYStem Descriotion- - only for a part icular communication channel 

~~~ system operates m the following manner: The speech
signal is low-pass filtered to 3.2 kHz (telephone bandwidth).McAulay (41 has suggested en algorithm for detecting sampled at a 6.67 -ItHi rate , and high-pass filtered at

speech in in airboma command post noise environment, but It approximately 200 Hz to remove any do or low-frequency hum.
The ou~ ut from the high-pass filter is formulated Into bloclis of

Psrtielly supported by DARPA . Information ~‘rocesaing Branch , 100 samples (15 milliseconds of speech data~. E.cf~ !~odt of
contract NOOl 73-77 -C -0041 and monitored by NR L. speech is then applied to four subband dIgital filters , time
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series output of each filter is labeled , pooled , and ra nk ordered. Hz is statistically different from the subbands forming the
The rank -order values are then passed to the detector or pooled sample, then voiced speech is daclared at the output of

• classifier algorithm. Figure 1 shOws a block diagram of the the detector . If the apposite condition exists, then unvo iced
detection a lgorithm , speech is declared at the outpu t of the detector. The decision

procedure tested is closely related to the nonparatn.tric
The filter subband partitioning is based on the work of detection procedure using a spectral data concept first

Crochisne (91. The important Property achieved by this filter intruduced by Woinsky (131.
bank is that the sum of the individual frequency responses of
the ban~~ass filtars (composite response) lies flat with linear Test Statistic
phase. The design of the subbands is based on perceptual The following description of the Savage test statisticcriteria. The band-partitioning is such that each subba nd follows the development presented in I4ajelt [14) . Since the
contributes equally to the articulation index (Al). The Al amplitude distribution of speech us nearly exponential, theindicates, on the average , the contribution of each part of the Savage test statistic is selected because it is the optimum rank
spectrum to the overall perception of the spoken sound. Figure statistic for an exponential distribution and a scale alternative.
2 shows the partitioning of the speech spectrum into four The Savage test statistic has the form
contiguous bands. These filters were designed using
Mcclellan. Parts, and Rabiner ’s program (10). N

S :Z  A 121Detection Procedure 12 1 2)
To evaluate the applicability of nonpa ra metruc rank orde r

detectors to the V-l.N-S classification problem: three where Z is a switching fu nction:
• assumptions were made: (1) The spectrum of speech is

different from bandlimited white noise. (2) The noise spectrum - 1 if the ith rank belongs to the filter output under test
is approximately flat. (3) The amplitude distr ibution of speech is I - 0 othe rwise
approximately I.aolacian (111

and where N I
~~~~~~~~ ez p ( — ,/~ ’~~- )  - ( I )  A 1 :Z  T (3)8

where 8 is the rms speech value, wh ich heavi,y weighs the ranks near the upper tail in the
critleil d.cition region. Under $0 the Savage statistic satisfies

• The detector based upon these assumptions operates in the
following manner: The noise loectrum is assumed to be E ( Sl  : m , N :  m + ~
approximately fla t over the telephone band of 200 to 3200 lIz. - inn I N I (4)
This frequency band is analyzed by forming four contiguous Var(S): 

~~~~ ~~~ 
~~subbends. The subbands are chosen so that each subbend data

block us independ*nt. A two-sample test statistic is used for
each subband data block. The time-sampled data in the Consider the amplitude distribution function F ( - I  with
subbend being tested forms the first sample, and the remaining standa rd deviation 8 and zero mean corresponding to H0. For
pooled data forms the second sample. The procedure for th. the condition 81 > 8~ we h a v e F ( x / 8 i  )~ F (x/80 ) in
two-sample problem us to combine or pool both samples into a the critical test region of the upper tail Let 8 I correspond to
single ordered sample and then assign ranks (1. 2, • , N) to the samp le from the subband under test and let 8~ correspond
the sample values from the smallest to the largest value , to the pooled population under H 0. If voiced or unvoicea
withou t regard to the subbarid source of each value. TM speech is present, then 8t > 3~~

, otherwise 8f ~simplest test statistic is the sum Of ranks assigned to the values Consequently the hypothesis test can be stated as
from one of the s’jbbends . If the sum (test statistic~ is too large .
there is some indication that the va lues from that Subband tend
to be larger thar the values of the pooled second sample. The H0: 8~null hypothesis HO of no difference between subbends may be (5)rejected if the ranks associated with one sample tend to be 

- 
~~larger than those of the other sample; and the alternate I’  I 0

hypothesis H 1 is accepted . Under the assumption that the rank
of any single outcome is equally likely, the probability of any
test statistic can be determined by counting outcomes, knowing which can b. tested with ranks based on the Savage statist ic S
there are NI total permutations. A test statistic for each and a th reshold S° selected from rank statistics. The

:‘ subband data block is calculated and compared with a threshold procedure follows.
determined from statistical tables. This decision procedu re is
referenced in mathematical literature as simultaneous U nder the null hypothesis H~ . select a thre*hold S ~ such
statistical infe rence end is described more fully in (12). The V. that P(S � Sa l s 1-0 where a is the probability of a type I
UV.S decision is a single-sided hypothesis test using the upper error usually between 0 10 and 0.01~ The quantiles of S° are

• tail of the distr ibution function , given in Tab le X of Halek (14) for N S 20. If N > 20 a norma l
distribution approximation can be used considering Eq. 1 and 2.

The detector compares a set of m time data samples from Accept H0 if S ~~ S° - Otherwise regect H0.
one of the subbends with pooled data from the other subbands
to determin. if the sampl, amplitude distributions (AD ) ar e the Rank ing of the data and calculation of S may require an

• same or different based on ranks. The form and parameters of excessive number of computer manipulations; the procedure
the ADs are unknown . ‘ -he sample amplitude distributions In requires that all date from the filters be stored for each data
the subbands are statistically similar , to within testing error . fra me for rank ing purposes. This problem can be reduced using
noise only is declared at the output of the detector. If the a mixed Savage statistical test (143 wh ich was applied to the
sample AD in a subband with a frequency range below 2000 data presented in the following section .
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EXPERIMENTAL RESULTS Statistics to R obust Speech Activity Detection”. Ph.D.
- 

The nonparametric classif ier was tested on the diagnostic dissertation . Dep. EEC. ENG.. Univ . of Utah . Dec. 1978.
thyme test (DRY ) file tape supplied by Dyne Stat Incorporated
(4). The additive white nose tape was generated by digitizing I 2) B ishnu S. Atal and 1. R Rabmer , “A Pattern Recognition
the analog outout of an ana log noise generator. Both the word Approach to Voics.Unvoiced-Sllence Classification with
file and tie noise file ware preflltered with a low-pass filter Application to Speech Recognition”. IEEE TRANS on
having a 3.2 kHz cutoff frequency and ware sampled at 6.667 Acoustics, Speech. and Signa l Processing, Vol. ASSP-24.
.~i4Z. No. 3, June 1976, pp. 201-212.

Using the software programs described in (151 arid the DRT ~3) V. V. S. Sam e and 0 Vengopal. “Studies on Pattern
data file, a controlled 081’ word date base with ~~~itive wh ite Recognition Approval to Voiced-Unvoiced’Silence
noise of progressively smaller sfonal-to.noiee ratios: 39. 30. Classification ” , Conference Record, 1978 IEEE
20. 10. and 0 dB ware created and processed by the detector Internationa l Coi-fersnce on Acoustics, Speech, and
algorithms. Tests were conducted to evaluate the speech Signal Processing. IEEE Cat. No. 78CH1285-8 ASSP.
detector’s performance for the five different signal-to-noise Tulsa, Ok., April 1978. pp. 1-4 .
ratios of widuband Gaussian noise. For each clean test word
from the ORT file, a manual analysis was performed on each (4) R. J. McAulay. “Optimum Classification of Voice Speech ,
15-millisecond interval to classify it as voiced, u nvoiced, or Unvoiced Speech . and Silence in the Presence of Noise
silence based on visual inspection of the acoustic waveform and Interference” . Technica l Note 1976-7. Lincoln
and a phonetic interpretation of the utterance. Two Laboratory. MIT, 3 June 1976.
independent manua l classifications were made on each test
word. IS) B. Gold. “Digital Speech Networks” , Proceedings of the• IEEE , Vol. 65. No. 12. December 1977. pp. 1636-1658.

A V-UV -S decision was made by the computer every 15
milliseconds based on a m ixed Sa’ ege statistic using 100 (6) A. F. Daly and C. K. Rushforth . ‘Nonparametric Detection
samples from each filter subband represented in figure 2. The of a Signal of Known Form in Additive Noise”. IEEE
mixed Savage stetstic was formed by averaging the absolute TRANS on lnforntat ion Theory , Vol. fT-Il . Jan. 1965, pp.
value of 5 samples forming 20 averaged samples per subband. 70-76.
The 80 averages from the four subbend5 ware pooled and
ranked, (7) J. B. Thomas. “Nonperametric Detection” . Proceeding of

the IEEE , Vol. 58. No. 5. May 1970, pp. 623-631.
Error rates ware computed by comparing the manua l

classification with the detector s classification output. Table 1 (8) J. D. G ibson and J. L. MeSa. Introduction to
P summarizes the overall recognition rate as a function of signal- Nonperemetric Detection with Applications. New

to-noise for the simultaneous decision procedure for all 20 test York: Academic Press. 1975.
utterances .

(9) R. E. Crochiere and N. A. Sambur . “A Variable Band
The recognition results in Table 1 and spectra l analysis of Coding Scheme for Speech Encoding at 4.8 kb/ s’.

the DAT background noise indicate that a significant low- Co&ersnca Aacoi’d. 1977 IEEE Internaczon l Conference
frequency spectra l component is present in the backgrour’~J on Acoustics. Speech . and Signel Processing. IEEE Cat.
noise of the DAT file. Table 1 and the additional test described No. 77CH1197-3. Hanford . Comm., May 1977. pp. 444-
in (1) show that as noise is added , the effec t us to whiten the 447.
spectrum , and therefore, the misclassification rate decreases at
30 dO as compared to 39 dB. (10) J. 14. McC lellan . T . W Perks, and L. A . Rabin.r , “A

Computer Program for Designing Optical EIR Linear Phase
CONCLUSIONS Digital Filters”. IEEE TRANS on Audio and Electro

Acoustics, Vol. AG-21 . December 1973, pp. 506-526.
A theoretical and experimental investigation for detecting

the presence of speech in widettand noise and classifying the ( 11) M. D. Psez an d Y  H. Glisson . “Minimum Mean-Squared-
detected utterance as voiced or unvoiced, based on a Error Quantization in Speech PCM and OPCM Systems” .
nonparemetric statistical detection approach . has been IEEE TRANS on Communications, Vol. COM-20, April
described . Thu speech detection technique that was tested is 1972. pp. 225-230.
effect ive ~or detecting speech in widsblnd noise at a signal-to-
noise ratio from 39 to 0 dO and meets the requirement for 112) J. 0. Gibbona, Nonparametric Statistical Inference. New
being independent of transmission channel cha racteristics, York: McGraw-Hill. 1971
recording Conditions, and distr ibution of the background random
noise. The desirable fea tu re of this detection or classification (13) N. W Woinsky. “Nonp.rametric Detection Using Special
scheme us that is requires neither a training set of data nor a Data”. IEEE TRANS on Information Theory, Vol. fT-I B, No
priori information of the statistica l parameters of speech or 1 , January 1973. pp. 110-118.
background noise

(14) Jaroslav Hagek . A Course in Nonparam.tric Statistics. San
ACKNOWLEOG”, ~NTS Francisco: Holden -Day. 1969.
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Figure 1. Block Diagram of Signal Classification Method
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Figure 2. PartitIoning of the Speech Spectrum into Four
Contiguous Bands that Contribute Equally to
Artlcu(a~~~ Index with Frequency Ranges of
200 to 3200 Hz.
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TthIe 1.

20-Sampfe Recognition Rate for the Simultaneous Decision Procedure

Percent 9.co nitton Silisc. Voiced UnVoiced

S/N 1~ dl 39 30 20 t O 0 59 30 20 10 0 19 30 zo to a
Gob 47 93 79 S t 30

Sue 41 - 100 100 tOO ICC - l00 tOO 100 100 “ 92 35 25

t.uat 52 45 95 95 91 45 9* 93 $2 36 100 100 tOO 0 0
.151 23 83 tOO 100 tOO 9? 100 49 75 49

loSsi 46 52 96 *9 89 100 tOO 95 $4 55 100 100 67 0 0
Job 70 90 90 90 40 *4 44 70 3* 24 75 1110 73 *0 2*
Ciie.~ eS ii 4$ S I 91 Se lOU St SI 76 100 56 S6 71 57

Sold 37 71 N 100 100 lOb 100 93 52 44

0 73 100 100 100 100 laO 94 Ss 17

wed too too too 100 100 9* 93 93 79 43

Deck 75 100 100 tOO 100 93 82 77 55 41 56 43 29 0 0
Cites 300 ‘tOO tOO 100 100 53 44 90 90 ‘3 56 5% 56 71 43
Then5 tOO tOO 100 100 100 93 95 s. s~ 22

keep 4! 100 100 100 tOO 9% 94 S5 71 71 • tOO 100 67 33 0

Cot N 90 93 5% 54 91 $3 70 61 50 100 100 100 0 0

Desk II 100 100 100 tOO 92 59 iS 30 21

Oboe. 56 tOO - t Oll tOO 100 tOO . tO O 77 tOO tOO - 53 30

iIia ~ 33 *7 tOO tOO tOO 94 97 57 61 42 100 tOO 91 64 27

Pool 43 ss tOO tOO 100 97 57 53 86 St

DIp 59 ii 95 tOO tOO 9$ Si 53 4. 26

keats..
• P.tce.t sa 90 97 97 37 93 94 87 ‘2 45 95 91 75 4? 30

Rac.5.ii to.

-a’

I

~~ 4.t

—3 8— 

~~~~~~~~~
•

—.-- .-..— ————— —,. - ——..———- --- —,.- - --—-.,-- -—.,.--— — .— . . . ... _..~~~~~ .•~~~~~~~~~~~ 



ESTIMATING THE PARAMETERS OF A NOISY ALL-POLE PROCESS
USING POLE-ZERO MODELING

W. J. Done

C~ K. Rushforth

December 1978

I

LI

“ I’

To be presented at ICASSP-79 .. - •

Apr11 2-4 , ‘I 979
Washi ngton, D C

—39— 

~~~~~~~~ -~~~~~~ -- ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~



ESTIMATING ThE PAJ1AMZTERS OF £ NOISY ALL-POLE PROCESS
USING POLE-ZERO PEDELING

V. J. Done
Amoco Research Center
Tulsa, Oklahoma 74102

C. K. Kushfortb
Department of Electr ical Engineer ing

University of Utah
Salt Lake City, Utah 84112

ABSTRACT outset to account for the effects of additive white
noise. We show that the addition of white noise to

Linear predictive coding (LPC) has been suc— an AR(q) process (an all—pole process with q poles)
cessfully applied to the encoding of speech and results in a new process which is an auto regr es—
other t ime series . It has been widely observed , sive moving—average (AMA ) process with q poles
however, tha t the performance of an LPC algorithm and q zeroes. Furthermore , the poles of the new
deteriorates rapidly in the presence of background ARM?1 (q, q) process are identical to the poles of
noise. In thia paper , we describe and discuss one the original AR(q) process , a fact which greatly
approach to the identification of a time series simplifies the estimation process. By modifying
corrupted by additive white noise, the model in this way , we tran sform the problen

of estimating the parameters of an AR process in
A coamon approach to this problem is to pre— the presence of noise into a problem of estimating

filter the noisy t ime series , and then to apply an the parameters of an ARMA process which has the
estimation algorith m which treats the time series sane poles or AR coefficients as the original pro-
se if it were noise—free . We describe an alterna— cess.
tive approach which involves modifying the time—
series model at the outset to account for the Optimal estimatio n of the parameters of an
presence of noise. An estimation algorithm is AIUfA process is much more difficult than estimat—
then developed for this modified nodal. We die— ing the parameters of an AR process. Our objec—
cuss the development of the model , the estimation tive in this paper is to determine whether there• algorit hm , and some representative experimental is any performance advan tage to be gained using
results, the approach described above, and we do not con-

cern ourselves with computa tional efficiency per
INTRODUCTION se If this method were to be implemented , it

would no doubt have to be modified to increase its
Linear Predictive Coding (LPC ) has been speed .

widely and successfully applied to the encoding
and processing of speech waveforms and other time Estimation of the parameters of an ANNA pro—
ser ies . Most of the initial demonstrations of LPC cess has been extensively discussed in the liters—
were conducted using high—quality and relatively ture (~, 6 , 7). We describe an algorithm devel—
noise—free signals, however. It has recently oped by Anderson (7) for conditional maximum—
become clear that background noise and other per— likelihood estimation using a version of the
turba tions can cause a serious degradation in the Newton—Raphson method .
performance of LPC algorithms (1, 2). In speech
processing, for example, the presence of noise can Finally , we present the results of a number
adversely affec t silence detection, voiced/unvoiced of experiment, conducted using simulated time—
determination, pitch period calculation , and iden— series data. We compare the estimates obtained
tification of the LP coefficients. The work dis— using the Nevton—Raphson method with those ob—
cussed in this paper deals only with the problem of tam ed by applying the etandard autocorrelation
coefficient identification , and is applicable to method of LPC est imation to both the umsodif Led
any t ime series which can be modeled as an all-pole noiay tin, ser ies and to a Wiener—filtered version
or autoregressive (AR ) process perturbed by addi— of this noisy time series. We also include re—

• ~ tive white noise. We make the further simplifying sults obtained by solving the “shifted” Yule—
assumption that the order of the process is known ; Walker equations (B) .

- thus, only the unknown coefficients of the differ-
ence equation defining the AR process must be .sti— TIlE MOS)EL
mated from the observed data .

In this section, we give a very brief dowel—
S.veral sch~~~s hav, been developed to deal opseut of the model which results when white noise

• - With the effects of noise on LPC estimation algo— is added to an AR process. For more details, see
ri thes (1, 3, 4). The approach to noisy t ime— (~) or (10).series analysis which we discuss in this paper in-
volves a modification of th. process model at the We assume that the desired signal process
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a (k) is a statio nary AR( q) process of known order x(k) — v(k) — 0 for k < 0, we can wr ite (3) in
q described by matrix form

q (5)

~ a (i)s(k — i) — e(k), (1) where
q

where c (k) is a sequence of independent , identi— — ! s(i) (6)
cally—distributed Gaussir random variables with i—O

and
mean zero and variance °e We further assume that
a(O) • 1 and that q > 0. This signal process isI: contaminated by a sequence n(k) of independent , ~ b (J) ~~~ 

(7)

identically—distributed Gaussian random variables
with mean zero and variance c~ to form the observ—
able sequence The conditional log likelihood function (condi-

tioned upon the inital values assumed for x(k))
x(k)  • s(k) + n(k) . (2) can now be written

It can be shown (8, 9) that x(k) satisfies
the relationship 

Ln (f) — — tn (2ir) — ~~ Ln(c~) + in ~ 
— in 

~~

q q

~ s(i)x(k - i) - ! b(j)v(k - 1) (3) 
- .L ~

T AT(BT) !~ 
A ~~ (8)

2a2 — —
v

where b(O) — 1 and v(k) is a sequence of indepen— 
The conditional maximum likelihood estimates

dent , identically-distributed Gaussian random van — ~~ (a(i))~,,1, {b(j))~ ,,1, and a~ can be obtained

ables with mean zero and variance o,~. Thus, the in princip e by dtffe~entiating (8) with respect
observed noisy process x(k) can be viewed as an to each of these parameters , equating the results

ANNA (q, q) process with AR coefficients 
to zero, and solving the resulting set of simul—

MA coefficients (b(J))~_1, and driving— 
taneous equations. Unfortunately , these equations
sre nonlinear in the parameters and cannot be

sequence variance 
~~ 

This new .1 contains
2q + 1 parameters compared with q + 2 for the solved directly. Thus, we must resort to iterative

original model , 
methods of solution.

Upon comparing (1) and (3) , we see that the The estimation of ~2 can be decoupled from

AR coefficients of the new ANNA model are identi— 
the estimation of the a(i~ and b(1). Specifically,

cal to those of the desired signal process s(k). 
U we use (5) to define

Hence , afte r estima t ing the parameters of the ANNA
process, we can simply discard the MA estimates 

— 1
1 
~ ~~~‘ 

(9)

and retain the AR estimates. This result rests then
on the assumption that the additive noise is white.
If it is not , a similar result can be established •;2 1 ~T ~, (10)
but the AR para meters will no longer be the same . V N —

To estimate the a(i) and b( j ) ,  we define
PARAMETER ESTIMATION a —  Ia(l) ... a(q) JT, b = (k(l) ... b(q)) , and

B — a bT]T. The estimate of 0 is obtained
We showed in the previous section that esti— iteratively using the equation

mation of the parameters of an AR process contami-
nated by additive white noise can be accomplished 24+1 — 24 + !~ ~ 

(11)

by estimating the paramaters of an associated ANNA
- process • We have adopted and implemented an ANNA where Li is the gradient vector and K is a matrix

estimation algorit hm of Anderson (7) for this pun— whose elements will be given below. use (11) ,

pose , and we briefly describe this algorithm in an initial value ~~ is chosen, !~~ 
and g~ are cal—

this section. culate d , and these values are then used to obtain
an upda ted estimate !.t - The process is then

Of the several methods described in (7) , the r epeated iteratively until son. stopping criterion
One we selected is the so—called t ime—domain is satisfie d.
Nevton—Raphson method. To begin, we define the
N I matrix 

It is convenient to express ~ and ~ in the

Lk ~ 
~ ~ 

partitioned forms

1’ ~~
- -~~~

-
~~

• 

- [‘p4 ~j K — 
—

where lp~~ is the ~~ - k) ‘ (N — k) identity ma- 
— 

La
T (12)

tri m. Further , define col, t vector1 a • t x(O) . . .  and

~
j_ x (I-l)jT sndv .(v(O)...v (N-i)1 - Then w

- 
- k”a” (0...0 x(~)...x(N - I — k)J~.

- J~
> .~! Using the tnices ~~, and aes~~~ng that 

- 
[:]

. (13)
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The vectors v and a are q x 1 coli t vectors whose we used the true parameter values as the initial
jth and mth elements are, respectively, values. We did this on purp ose in order to avoid

‘ T ~ —l extensive discussion of this issue. The primary
fw3 4 — 

~ k’ I 
v (14) effect of using other reasonable initial guesses

.1 a should be a modest increase in the rate of failure
to converge , and does not seriously affect our

1 T m —l conc lusions . This is borne out by son. results
I ml = - —~~~, 1. £ , (15) obtained when we did not know the true values form the moving—average parametsrs and therefore were

forced to use other starting values.
where v is computed from the observed data vector
a by (a) . The el~~~nts of 

~~ 
0, and j are given by Estimates of the AR parameter a were obtained

for 518 frames , each containing 256 points of data,

T’ T~~
1
~ ~~ k —l for each of six signal—to—noise ratios. The math—

— L. 
~ ~I )  ~,L) L ! v , (16) ods used to obtain these estimates were the follow—

ow ing:

- - T1 T’ —l, ~~ 1 —l 1. The time—domain Nevton-Raphson method
— 4~ ~1)  IL )  Lm A v , (17) described above.

O, 2. The standard autocorrelation method of
and LPC .

= A.. Tr AT1_lrLTlm Ln A_l ~ ~l8’ 
3. Solution of the shifted Yule—Walker aqua—

2 ~ L— J L— J — — —. tions to account for the moving—average
portion of the process.

To obtain 
~~ 

and ~~~, we simply substitute the 4. Wiener filtering, assuming knowledge of
parmters from the ith estimate into (l2)— (l8) . the signal and noise spectra , followed
For a detailed discussion of the computations by LPC estimation. In practice , these
involved, see (B]. spectra are not known, and in fact are

to be estimated , but this approach pro—
WERIMZNTA.L RESULTS vides an indication 3f what can be

achieved .
We have conducted extensive tests of the

t ime—domain Mewton—Rsphson algorithm described in The results obtained using these four math—
the previous section , and have compared its per— ods were averaged over the 518 frames of data , and
formence to that of several other estimators. In these average estimates are plotted in Fig . 1. In
this section , we briefly s~~~anize some represen— the case of the HR method , the average was taken
tative results and discuss the conclusions we have only over those frames for which convergence
drswn from these results. A discussion of results occurred (515 at 0 dN , 214 at —10 dl, 518 in all
obtained using an algorithm developed by Steiglita other cases) . In terms of these aver age results ,

• 
~1l3 appears elsewhere in these proceedings (12], it i. clear tha t the HR and shifted Yule-Walker
and a mach more extensive discussion of all our methods are superior to the other methods. In
results appear. in 181 . particular , the SIR threshold below which the

estimate becomes very poor is roughly 14 dl lower
Although we have conducted tests on higher— for the HR method than for the uncorrected LPC

order processes , we restrict our attention here to method .
a first—orde r AR process contaminated by additive
white noise . For definiteness, we took the single Looking only at the averages can be somewha t
Al parameter to be 0.5. As an initial test of the misleading , however . A more complete picture is
performance of the Revton—Rapheon algorithm we obtained by looking at the variances of the
performed , for a number of 256—point frames of estimates , and here some of the advant age of the
data , s straightforw ard search in (a , b) par~~~ter NP. algorithm is lost. The variance of the NP. eati—

• space to locate that point which minimized the mate is appreciably larger than that of the LPC
wiconditional sum of squared residuals (see (10), estimate , as is shown in Fig . 2. Thus , although
Chapter 7). The Nevton—laphs on algorithm was the NP. method is superior on the average , the LPC
applied to the same data , and its estimates of a estimate will actually be better for a significant

~
. and b were compared with the values obtained using number of individual fra mes.

the search procedure - In all cases in which the
1- $ewton—R aphson procedure conver ged , the results SUPQIARY

-
‘., agreed very closely . These results confirm that

when poor estimates are obtained using the NP. In this paper , vs have shown that an AR (all—
-yr method , it is almost always the case that these pole) pr ocess contaminated by additive white noise

poor est imates really do minimis, the sum of the can be modeled as an ANNA (pole—zero) process whose —

• .. squsr.d residuals . Thus, the weakness is not in poles are identical to thoee of the original AR
the * algorithm per se but is inherent in the process. Thus, the problem of estimating the

- • denlying least-squares approach to estimation. per ters of a noisy Al procese can be transformed
into one of estimating the par~~~ters of an ANNA

~ 

In most experiments using the II algorithm, process, wifortunstely a much harder problem.
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THE PARAMETERS OF AN ANNA PROCESS

W. 3. Done
Amoco Research Center
Tulsa, Oklahoma 74102

C. K. Rushforth
Department of Electrical Engineering

University of Utah
Sal t Lake Ci ty,  Utah 84112

ABSTRACT s(q), b(O), . ..,  b(p).

Steiglits (2) has recently described an In (2), Steiglits applies this method to data
algorithm for estimating the parameters of an obtained from a system in which the input V(z) is
autorsgressive-.oving—sver age (AlMA ) process . unknown The data x(k) are assumed to reslut f-ron
This algorithm has application, for example , to the driving the unknown system with an impulse.
problem of determining the poles and zeroes of the Steiglitz applies this method to a ten—pole , two—
vocal—tract transfer function . zero “unknown” system in which the input v(k) is

actually an impulse train , simula ting voiced
In this paper , vs report and discuss the speech . Because the data x(k) are assumed to

results of a number of simulations conducted using result from an impulsive input , Steiglits proposes
the Steiglitz algorithm. The bulk of the expeni— that x(k) be modified prior to analysis to improve
ments involved driving the ten—pole , two—zero that assumption . Preemphasis , windowing , and
filter described in (2) with a single pulse , with cepstral—donsin operations are suggested toward
a short pulse t rain , and with samples of white that end .
Gau ssian noise. In each of these cases, we eval-
uated the effects of such processing options as
windowing, presmphasis, and cepstral-domain filter- ~~~ERD~~~AL RESULTS
ing . We also discuss and compare results obtained
by applying the Steiglitz algorithm and a Newton- The application of this algorithm to data
Raphson conditional maximum—likelihood algor ithm generated using white noise as the input to the
to a fi rst—order pr ocess. ten—pole , two—ze ro model used by Steiglitz is

reported in (3) . This represents the situation
usually encountered in ARM model estimation. For

INTRODUCTION comparison , the algorithm is also applied to data
generated with inputs of a single impulse and an

Steiglitz and McBr ide (1) prop ose a system impulse train. The various modifications to x(k)
identification procedure in which thu s—domain prop osed by Steiglita are perfor med . The result—
t ransfer function of the unknown system is B(s) ! ing sequence is analyzed to obtain estimates of the
A( s). 1(z) and A(s) are polynomials given by AlMA coefficients. Results are reported hers on

those modifications which produced estimates of
q the AlMA coefficients having the allest mean

A(s)  — I g(j)g~~
1 s(O) • 1.0, (1) square error when compared to the coefficients

i—o us.d to generate the data.
and Figure 1 shows the spectr um (in dl) of the

B(s) — ~ b(i)a~~, b(0) — 1.0. (2) system to be identified. Using an input of a

i—o single impulse, the resulting data sequence x(k)
is shows is Fig . 2. The best estimates of the

The polynomial A(s) determin.s the pale locations AlMA coefficients are obtained by applying the
of the model and is , equivalently, the aut ofegree— algorithm directly to x(k) • The spectrum of the
else (Al) operator . The sero locations are deter— ..tim.ted model after one iteration is shown in
mined by i(s) , the moving—average (MA) operator . Fig . 3. There is essentially no error in the
Thus , if the driving sequence v(k) is a white estimate .
nois. sequence , the response x(k) is en AlMA pro-

- 
- em. As~~~in$ that the input V(a) and outpnt The next ca -‘e to be discussed is the ansly-

1(a) are known , the model’s response is U(s) • eis of data emsreted using an impuls, train as
fl(s)/A(s) JV(a) . The error is them give, by the input . The L~ nl ee occur every 100 s~~~leN(s) • U(s) — I(s) . After limsarisiag the model, palate . The russitis. .stp.t is show. in Fig. 4.
iteiglits and Nclrld. arrive at en iterative pro- In this see., the following dificatio.s are made
csdur e which estimates the coefficients ad ), ..., to the due m(k)
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1. Imfng window x(k). The last case to be considered is for data
2. Window the complex cepstrum of x(k) - generated when the input to the system is an
3. Transform the resulti ng cepstra l approxima tely white noise sequence. The resulti ng

sequence to obtain the time domain output is shown in Fig. 7. The best estimates in
sequence zng (k) . this case were obtained by analyzi ng x(k) directly .

Unlike the impulse excited case , however , the
After windowing x(k) in step 1 to obtain estimate is poor . Figure 8 shows th. spectrum of

w(k) x(k) , th. data are transformed using an the estimate after two iterations . Further itera—
N—point DI? . Prior to computi ng the complex tions result in progr essively narrower and higher
cepstrum, the signal is forced to have sero—ph ase. spectral peaks. The estimate often becomes un—
The complex logarithm thus becomes stable • The algorithm is no longer achieving the

excellent results found in the other two cases.

Because the tenth order AR operator is likelyRedlog XCI)) — ~ log{fRe 1(1)1
2 + Im(X(t )] 2}(3) 

to tax any estimation algorithm , the algorithm
developed by Steiglitz was applied to a single—pole

Im(log X(i)} — 0, (4) system (q — 1, p — 0), excited by white noise. The
single denominator coefficient , a(l), was 0.5 for
this test. The estimate for a(l) from the Steig—

where 1(1) is the DI? of w(k) . x(k) . After  the lits algorithm is compared to that obtained from a
windowing operation , to be performed on the cep— Newton—R aphson (HE ) implementation of a maximum
strum , the zero—phase ass mption yields the same likelihood AlMA estimation pro cedure (4) . The
results as those that would be obtained using the results for ten iterations of one frame of data are
actual phase of 1(1). The imposition of zero presented in Table 1. The initial guess for a(l)
phase avoids the necessity of phase unwrapping , in both algorit hms is 0.5 , the actual value of the
The complex cepstr um i(k) of this zero—phase sig— coefficient used to generate the data. Using this
nal is found by performing another DFT on the as the initial guess removes the uncertainty about
complex logarithm, an initial guess from the test. From Table 1, we

see that after the first iteration , the NR estimate
Two operations are now performed on i(k) - does not change in at least the five most signif i—

First , let imp (k) — u(k) . i(k) , where can t figures. The Steiglits estimate, however ,
varies considerably from iteration to iteration.
The estimate at ite rations 2 , 3, and 4 is unstable .N, k — 0 Convergence does occur in later iterations , but to
a value indicati ng the pol. is close to the unitN

T circle. This results in a narrow , high peak inu(k) — ~~2, k : the spectrum , characteristic of the est~~~te in
0, k 4 1, . ., N the tenth order case. In addition, computations

using the Steiglits algorithm requirá the use of
double precision arit hm etic , even in the previous

The cepstr um is now causal , and the correspondin g successful cases. The MR method does not require
t ime—domain signal has a magnitude spectrum iden— double precision arithmetic for successful param—
tical to that of w(k) xCk ) . The second opera— eter estima tion .
tion performed on i(k) is to zero the portion of
the cepstr um having the pitch spike associated
with th. periodic nature of x(k ) .  The c.pstra l CONCLUSION
signal imp (k) resulti ng from these two procedures
is transformed beck to the time-domain signal
xna (k) . The c.pstral processing has achieved __ The results of the tests performed here con—
goAls: firm that the parameter estimation algorithm pro—

posed by Steig lits (2) produces good results for
1. x~~ (B) is a minimum phase sequence • the impulse— and impulse—train—excited cases • Care
2. The periodic nature of x(k) is sup— must be taken , however , in choosing modifications

to x(k) . The performance of the algori thm in the
-: pressed .

noise—excited case is poor , even for a first—order
Th. assumption of an impulsive input is more near ly process • The algorithm does not appear to be
valid for sma Ck) than for x(k) . Ana lysis to deter— applicab le to the problem of estimating the purem—
mine the AMPS coefficients is performed on zmp (k) , eters of a noise—excited ANNA process.
which i. shown in Fig. S.

ACX1IONL!DQ~!IIT-
~~~ It was found that the H ing window step 

- -

• wee necessary to obtain a convergent , stable f 11—
ter estimate . Preumphusis was not performed on This work was supported in part by the Inf or— -

~~~~
either z(k) or xma(k) , as this tended to degrade nation Processi ng Branch of the Defense Advanced
the coefficient eltimetes somewhat . The spectrum Projects Resear ch Agency, monitored by the Naval ~- -

of she estimate after two iterations is shown in Research Laboratory, under contract No. P00173—C—
Pig. A d is quite good, confirming the results 0041.
in (2).
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Fig . 3. Estimate of model spectrum Fig . 4. System outpu t when excited
from Impulse—exci ted output. by impulse train.
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Pig. 5. Modified system output Fig . 6. Estimate of model spectr um fr om modi-
af ter cepstral processing. fied impulse—train—excited output.
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Table 1. Comparison of Cite Steiglits and MR
estimates for a(l) of an AR( 1) process.

Iteration Steiglitz MR

1 —.05109 .49538

2 1.41350 .49538

3 —1.22940 .49538

4 —5.58270 .49538

5 — ,24169 .49538

6 .89261 .49538

7 .97296 .49538

8 .99496 .49538

9 .99732 .49538

10 .99728 .49538
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ABSTRACT expans ion resu lt s, it requires the making

of signal—dependent assumptions about the
Modification of the rate of tine—frequency boundary. Evidence

occurrence of acoustic events wi thout suggests that a Constant bandwidth
a l t e r i n g  frequency content , and analysis cri ter ion is consistent with
modification of pitch without changing neither the human auditory system in
time scale are presented as equivalent general  nor with correct formulation of
probl ems. While the short—time Fourier the rate compression/exp ansion problem in
transform has been used to solve the rate particular. For exampl e, recent automatic
modification problem , It is not a natural phoneme recognition work by Scan s (23
tool. It lacks the scaling property of suggests that information by which various
the Fourier transform . The constant—Q~ burst and stop phonemes are recognized
transform , on the other hand , exhibits occurs with time resolutions finer than 20
this property. A more natural rate/pitch msec , and probably as fine as S to 10
modification system using the constant—Q msec . The auditory system , on the other
transform is presented which per forms well hand , hears tones wi th fundamentals longer
with rate/pitch changes by factors of than 20 msec. Of course , the reason that
between one—third and three . - the ear perceives stops and bursts as

tempora l even ts, wh ile correctly analyzing
50 ha tones is that it is not a constant

INTRODUCTION bandwidth device , but rather , constant-Q.
Thus , the constant—Q transform , which maps

The possibility of modifying the rate signals into a two—dimensional space where
at which speech is articulated has time and frequency resolutions are
pr ompted a var ie ty  of e f fo r t s , rangi n g dep endent on analysis frequency, provides
fro m simple time—base scaling and the a more natural tool for p e r formi n g
excision or insertion of waveform segments independent modif ica t ions  to- temp oral or
to the more successful and complete harmonic aspects of signals. The probl em ,
approach used recently by Portnoff (11 then , of defining what portions of a
involving time scal in g of the short—time signal ought to be compressed or expanded
spectr um . These e f fo r t s  have been in a speech rate chang e system Is at least
hindered , in pa rt , by the difficulty i n par ti ally solved by requir i ng the
sa t i s fac to r i ly  defining what Is meant by time—frequency boundary to be a varia bl e
rate—chang ed speech. As Portno ff points related to the ear ’ s frequency—dep endent
out , this difficulty results from the boundary.
ambiguity in classifying aural events as
havi n g either temporal or harmonic
significance . Clear ly ,  aspects of a CONSTANT Q ANALYSIS AND SYNTHESIS
signa l which a ppea r to manifest  themselves

• harmonical ly  should be preserve d in rate The continuous formula t ion of a
compression or expansion of a signal , Fourier—li ke transformation which has a
while characteristics which are perceived frequency—varyi ng time—frequency boundary
In time ought to be subject to is given as
mod i f i ca t ion .  The short—time Fourier • _~~~transform , which maps signals into a F(~~, t ) — I f ( t ) h ( ( t — r ) w ) e  dr (1 )
two—dimensional space , separates the t ime
and frequ ency content of a signa l based on where the analysis wi ndow function , h , is
the assumption that variat ions which occur def ined to have f in i te  non—z ero extent (as
over intervals greater than the constant in the Ma nn , Hamming , Bartlet and Blackman
time resolution of the analysis window windows , for example) . If by the
will be classified as temporal events, single—arg ument functions , F and H, the
while other characteri stics must be Fourier integral transforms of f and Ii a re
measured along the frequency axis, Hence , designated , this constent—Q transform may
while constant bandwidth analysis has be written in the form ,
produced very good speech compression and
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• - resolution , T,, , as the non—zero extent of
F ( i g ) R ( (v — w ) / w ) / ~ w( ( 2 )  h , and the freq uency resolution , F~ , as

the extent of the princip al Interval
where v is the frequency variable of the around zero where H is positive. The
Fourier integral. C lea rly, the analysis scaling pr op erty of the Fourier integ ral
behaves for any analysis frequency, ~ , as transform guarantees that the prod uc t of
a band pass filter whose frequency the time and frequency resolutions will be —

resolution is directly prop ortional to its a constant . Thus,
center frequency, w , whose t ime
resolution is inversely prop ortional to B , ,  - F~ T~~ (4 )

and whose output is frequency—shifted
to zero. Because the ra t io  of analysis where B~ is a constant whose value Is a
f requency to frequency resolution is a consequence o f the choi ce of the window
constant, this integ ral transform has been function , h, and of the defini tions of p~referred to as a constant—Q transform . By and T~. Combined wi th the Nyquist
appropriately choosing the width and the theorem , this information is sufficient to
shape of the analysis window, h, the time permit sampling of the constant bandwidth
and frequency resolution of the constant—Q SPectral domain without loss o f
transform can be made to vary in a way information . In pa rticular , the density
which closely resembles the analysis of time samples must be greater than F
performed by the human ear, and the density of frequency samples mi~~tbe g rea ter than T

Although the time—frequency
separat ion of data in the constant—Q The extension of the above to the
spectral domain can be made to simulate problem of sampling the constant—Q
that in the ear—domain , (1) is not useful spectral domain is compl icated by the
in p e r f o r m i n g  ind ependent f requency or dependence of T_ and E 4, on frequency. The
time scaling wi thout a corresponding solution to this problem is enabled by the
synthesis expression. The filterbank following formalization . First , define ç
analogy to constant—Q analysis , explained to be the more—limited principal extent
above, suggests a method of synthesis. If over which H has values wi thin 3 db of its
the spectral domain is thought of as maximum value , and let B, represent the
equivalent to the output of a contiguous constant product of T and F~bank of shifted , scaled lowpass filters ,
the p ossibility that a simple B 1 — P’,T (5)
reco mbination of the various band pass a

signals will lead back to the original  Then
signal seems obvious. The correc t
synthesis expression is , in fac t , such an 0 • f / F, (6 )
algorith m .

• 
~wt From this the time and frequency

f(t) a k f F ( w , t ) e~ du ( 3 )  resolution may be determined as
-•

In this expression k is a constant which T~ (f) • B, Q/f ( 7)
Is determined by the mature of the
analysis window, and which, in prac t ice , and
is most easily determined empirically.
That this analog to constant bandwidth FBS 1~ (f) B~f/B,Q (8)
synthesis is but one of a family of
possible synthesis forms has been pointed Equations 7 and 8, com bined with the
out by Kaj iya (3). Nyqulst theorem , give rise to lower bounds

on the instantaneous sampling densities
along the frequency and time axes

SAMPLING THE CONSTANT—Q SPECTRAL DOMAIN respectively. In general , if A t(f) and
~f ( f )  are the instantaneous sampling

Implementation of (1) and (3) on a intervals at a frequency, f , then
digita l computer requires the proper — i
sampling of the spectral domain. Schemes At (f) < F~ (f) (9)
by which a constant bandwidth spectral
domain may be sampled wi thout loss of and

-
~~~~~

- I information are l imited by the analysis —l
wi ndow, whic h imposes time and frequency ~ f(f) c T~~(f) (10)
resolutions on the spectral information.
Specifically,  these t ime and frequency Utilizing these liøits and the filterb ank
resolu tions may be defined as the formula tion of the censtant—Q transform
respective intervals over which the window suggested in (2), constant—Q analysis can
function and its Fourier transform ar e be impl emented in discrete form using fast

— ‘significant’ . The ambiguity in this convolution
d.finition is removed by defining the time
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TEMPORA L AND HARMONIC SCALING
w it

the work rep orted here u t i l izes  a proper ty  Scale
of the constant —Q transform not shared by Har~~nic

The approach to rate cha nges taken in

the short—time Fourier transform . This
property, the time scaling property,

Temporal
a time—scaled function , t(at) , for f (t) I a )
follows d i rec t ly  from (1 )  by substituting ~~~~~~/~~

“ I I I I
and renam ing the result. w Ua

1’~ (w,t) — f f(at)h((t—r)w)ó’~~ dt (11) Time
ScaleThen, wi th a chang e of variables , 

i i i — 

~ t i i i(12) (b) (c) tF,(w,t) •J f(t)h( (at— .r)w/a)i~~~
’ dr/I al

or
Figure 1. The relationship of axis

F1 (~~,t) — F(w/a,at)/laI (13) scaling in the time and spectral domains
(a) Original spectral event (b)

Thus , the constant—Q time Scaling Har monically—scaled event (c) Temporally
property, given the relationship of (1), scaled event.
is

COT Because of the above duality, and
f(at) <—> F(w/a,at)/IaI (14) because scal ing of the harmonic axis is

conceptually straight—forward , this
- This property can be used to relate a approach was utilized in the work reported
chang. of scale of either the temp oral or here to enable changes in either domain.
the harmonic spectral information to a Schematically, the harmon ic sca ler is
change of scale of both the time domain implemented channel—by—channel as shown in
sig nal and the other spectral axis. figure 2.
Assume, for eXample, the possibility of 

~~~~~~~~~ 
________ ~~~~~scaling the temporal axis of the e ________

I3~~~.jj dth I ~constant —Q apect rum by a. Th is would g ive 
—> 

~~~~~~ 

.i.j~~~[__~.lExPand f_ >  ,~~ ...
~~~~~~ 4) —

F,(~~,t) — F(w,at) (15) 
________

[by a

channel IIf the signal , f, (t), resul t ing from
substituting F,(~~,t) into (3) were time 

outputs

scaled by 1/a, the result, using the I~’igure 2. A single channel of a harmonic
constant—Q time scaling prop erty would be scal er. Channel center frequency law 1scale factor is a.

COT
r, (w, t)  a ~~ ~ (Iw, t/ e)< > f, (t/a) (16) Scaling of the harmonic axis by a factor ,

~~, in a d iscre te implementati on requ ires
two operations.  First , t he e f f e c t ive

F,(w,t) — I a I F a~ ,t (17) bandwidth of each channel must be sealed
so that the relationships among the

Thus, as illustrated in figure 1, a var ious bands are not altered by scaling
harmonically scaled constant—Q spectral their center frequencies. Second , the
domain is related to a temporally scaled center frequencies of the various channels
comstant—Q spectral domain by a change of must be scaled. This latter operation and

4 the sig nal’ s time scale. the synthesis remodul ation nay be combined
into an equivalent single operation . It

3 should be noted , however , that to avoid
al ia sing  duri ng harmonic expansion ( a > 1 ) ,
ana lysis channels must be adequately
oversampled (by a factor of at least a).
The more involved of the two operations
above is the, bandwidth scaling . Because

• 
- the effective bandwidth of each channel is

not directly proportional to the phase
derivative as often assumed , the bandwidth
of the channel is not accurately expanded
by a when the phase derivative is scaled
by a. Kahn and Thomas (4) have pointed
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‘1

- j
out that the bandwidth of a simultaneously reduction available using the assumptions
amplitud e and phase modulated sinusoid is, of equations (21) and (22).
in fac t, a function of both modulating
functions. Represent the modulated output
sinusoid of the channel centered at u1 as CONCLUSION

c(t) — m (t)cos(w1 t+p(t)1 (18) The constant—Q transform has been
utilized to formulate a perception—related

where m(t) and p(t), denoted below as m definition of the rate—chang e problem.
and p, are the (real) channel amplitud e This definition , along with the t ime
and phase functions. Then, for scaling property of the constant—Q
non—deterministic signals the channel transform suggests a natural way of
bandwidth, fl~ , can be estimated using the impl eMenting both harmonic and temp oral
Kahn and Thomas bandwidth as scale changes. The author ’ s work proves

2 -2 ~ 2 
this method to be capable of good quality

— (E(~~ )+E(p m ))/E(m 
) (19) compression and expansion for factors

between one—third and three.
where the E denotes the expectation and
the dot the time derivative, Clearly, if
the amplitude—modulati ng function is a ACKNOWLEDGMENT
constant , the approximation mentioned
above is accurate . If , however , the Thanks to James T. Kajiya , Tracy L.
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• expanding band s (a)l), the number by which
the phase derivative must be scaled to
scale the bandwidth by a is greater than
a. When contracting band s ( a ( i ) ,  the
opposite Is true . It should be noted that
when the amplitude modul ation
contribut ion, E(.2 )/E(n~~), domina tes the
total bandwidth , (24) may become
imaginary. This e f f e ct  corresp onds to a

- lower limit on the total bandwidth
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